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Abstract 

There is a critical need for improved combustion-oxidation catalysts to reduce emissions of toxic 

volatile organic compounds (VOCs) emitted from exhaust gas of gasoline combustion in 

automotive vehicles. Materials and systems currently available, such as the three way catalytic 

converter (TWC), have low activity below 400 °C in the catalytic process. Palladium catalysts 

were prepared by alternative methods including: preparation by wet impregnation or incipient 

• wetness, drying by room temperature or air-oven, and support choice between silica and alumina. 

These catalysts were prepared to meet the demand for low temperature oxidation. Results 

indicated a 5% increase in percent dispersion of metal across the support due to room 

temperature drying conditions, a higher surface area and crystallite size favoring alumina or 

silica support, a much larger monolayer uptake for alumina supported catalysts, and 

characteristic site strength of 600 °C chemisorption characterized by temperature programmed 

desorption (TPD). 
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Chapter 1 

Introduction 

Automotive catalytic converters 

The primary catalysts used to currently reduce pollutants from vehicle and industrial 

exhaust are palladium, platinum, rhodium, and ruthenium. These metals dispersed onto the 

surface of alumina, thoria, or silica supports offer a variety of functions for combustion of 

volatile organic compounds (VOC). Palladium catalysts as well as other noble metal catalysts 

most often encounter VOCs such as carbon monoxide, nitric and nitrous oxides, ozone, 

hydrocarbons, and other non-halogenated VOCs in combustion environments. Combustion 

reactions release mostly harmless water vapor and carbon dioxide under high temperature 

conditions; however, the toxic VOC by-products released are a detriment to the environment and 

health. Therefore, it is necessary for these catalysts to be both robust and capable of efficient 

oxidation catalysis under high temperature conditions. 

Platinum is considered to be the most active metal for hydrocarbon oxidation, other than 

palladium for the oxidation of lighter than pentane hydrocarbons. Most hydrocarbons produced 

from automotive combustion are light weight and under a five carbon skeleton. Palladium has 

been chosen over platinum due to the relatively larger percent dispersion over a desired support 

(7). However, it has not been resolved to use primarily one noble metal as the drive of this 

study, but rather as one piece of a survey of metals to undergo the achievement of an engineered 

catalyst effective for low temperature activity. This objective derives from an inherent problem 

of current automotive related catalysis which is the inefficiency of catalytic activity at ambient 

temperatures (2). Modern automotive vehicles utilize the three way catalytic converter (TWC) to 

1 
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reduce the health risks and environmental impact of toxic by-products of the combustion of 

gasoline; it is composed of palladium, platinum, and rhodium metals dispersed on a cerium 

support. TWCs are highly effective at catalyzing oxidation reactions in the temperature range of 

200-250C but are catalytically inefficient at lower or ambient temperatures. Current emission 

standards in California require federal test procedure 75 (FTP-75) in which the emission of 

carbon monoxide must not emit more than 4.2 g/mi for every 100,000 miles driven; nitric oxides 

(NOx) must not exceed 0.6 g/mi for tier 1 loaded vehicle weight transportation (3). However, 

during cold starts the catalytic activity of the TWC drops low enough to emit nearly 90% of the 

toxic by-products. As a result, it has been of great interest for energy related engineering and 

environmental protection to prepare a catalyst effective at both the high operating range of 

current catalysts and at the lower temperature range encountered during a cold start. 

There are several proposed solutions to the cold start problem (3). One solution offers an 

exponential increase in the heating time of the catalytic converter vessel by placing it closer to 

the combustion output. This results in a lower production of toxic material but greatly hinders 

the life of the catalyst which generally outruns the life of an automotive vehicle or engine. This 

is necessary due to the cost of precious metals. However, the prolonged exposure of the catalysts 

to a higher temperature range results in the decomposition of the catalyst and possible sintering, 

thus reducing activity. Another solution to the cold start is direct heating of the catalytic mantle. 

It is easily foreseen that this method requires a supply of additional energy and thus defeats the 

purpose of energy conservation; most of these catalysts have low thermal conductivities. A third 

method attempts to heat the catalyst bed as well by supplying a flammable mixture of hydrogen, 

air, and fuel in the exhaust stream after combustion. This stream of exhaust gas is then ignited 

and heats the catalyst chamber but results in the reduction of fuel economy of the system.   A 
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fourth method has been proposed to prepare a catalyst capable of oxidizing toxic exhaust gas 

products to their harmless counterparts at ambient as well as high temperature ranges. 

Theories of heterogeneous catalysis 

In catalysis, the rate of a chemical reaction is changed by a participating substance, the 

catalyst, by choosing a reaction path with lower activation energy and thus resulting in a higher 

reaction rate than would be observed in the uncatalyzed reaction at the same temperature.  The 

result that the catalyst has on a reaction varies and depends on the surrounding species.   A 

catalyst can speed a reaction millions of times faster but in the presence of an inhibitor the 

catalyst will slow the reaction, or in the case of a promoter, the catalytic activity can be increased 

further. 

The catalysis involved in automotive combustion reactions encompasses the branch of 

heterogeneous catalysis in which the catalyst subsists in an alternate phase as the reactant 

medium. In the case of heterogeneous catalysis, it is important to clarify the nature of 

dissociation and the overall unifying theory of adsorption by the catalyst which is often 

overlooked and oversimplified. 

Adsorption 

Adsorption can loosely be described as an uptake on the surface of a solid which is 

preceded by dissociation of a bond, such as the hydrogen - hydrogen bond in the case of 

hydrogen gas (H2). When the interaction is chemical it is a process called chemisorption and 

when the interaction is physical it is described as physisorption. In the simplest case of H2, the 

process of adsorption can be described by a Lennard - Jones potential energy diagram (4). 

SURE mama 



www.manaraa.com

Potential Energy 

Distance From 
Surface 

Figure 1. Lennard-Jones potential energy diagram illustrating adsorption enthalpies for physical and chemical 
processes. 

The Lennard-Jones energy diagram indicates the potential energy of hydrogen as a function of 

the distance from the metal surface. As shown in the figure above, as the distance between the 

molecules or atoms to the surface of the catalyst increases to infinity, the potential energy of the 

adsorption approaches zero; this inherent observation is logical since there are no interactions 

between two species at a great distance of separation. Conversely, as the distance of the 

molecules to the surface approaches zero, the potential energy goes to infinity due to great 

electrostatic repulsion-interactions between the adjoining atoms' electron cloud. In the case of 

the hydrogen molecule, as the distance between analyte and catalyst decreases from infinity, Van 

der Waals attraction occurs and physisorption takes place (5). The force of this interaction is 

characteristic of the radii of the atoms and can be expressed as a sum of the atomic radii with 
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endothermic enthalpy of formation due to the physical force of attraction. The distance that this 

takes place is approximately 0.3 nm for varying metals. In the case of hydrogen atoms or hydron 

ions, the initial dissociation energy, approximately 434 kJ, occurs at any appreciable rate and 

enthalpy heat of formation is an endothermic chemisorption process occurring at a distance of 

approximately 1.5 nm. Generally there is no activation energy required to overcome from 

transition of physisorption to chemisorption due to the relative low potential energy intersection 

of the two adsorption interactions. Therefore, as a hydrogen molecule approaches the active site, 

it transfers smoothly from the physically adsorbed state to the chemically adsorbed state (6). 

However, as the surface becomes covered with atoms, the energy required for formation shifts 

the potential barrier above zero energy (exothermic) and thus creates activation energy for 

chemisorption. As a result, the reverse pathway (formation of hydrogen gas) is observed and the 

catalyst becomes saturated. This concept is relatively important for palladium/hydrogen 

interactions since the noble metal palladium has a tendency to adsorb hydrogen in the bulk of its 

metal. As long as the activation energy of the system is retained to a close-to-zero potential 

energy, a slower process of hydrogen diffusion to unoccupied sites is allowed within the bulk 

and offer interstitial hydrogen atom a stable position. In essence, palladium exhibits a natural 

phenomenon of retaining hydrogen atoms above normal capacity for transition metals (7). 

Physicochemical adsorption 

In theory, chemisorption can take place between any molecular species in which 

adsorption is not only limited to metals but any nonmetal solid as well. However, chemisorption 

will only truly take place when the free energy of the system (AG) favors the spontaneous 

equilibrium, indicated by a negative value (8). The free energy of a system can be defined 

according to Gibbs free energy. 
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AC = AH - TAS 1 

The adsorption of a species undergoing dissociation is determined solely on the enthalpy of the 

system since the entropy of the system will always increase and therefore be positive. Thus 

adsorption will occur for exothermic reactions. However, non-dissociative species could have a 

negative entropy gain and thus theoretically favor endothermic processes; although this is not 

seen experimentally (9). 

Physical adsorption is commonly associated with condensation of a vapor on a surface to 

form a liquid layer. Multiple layers are formed as molecules adsorb to the surface and a film 

develops. The difference in enthalpy between layers is characteristic of the physical adsorption 

isotherms and is defined by Brunauer-Emmett-Teller (BET) theory. This type of adsorption is 

studied in the proximity of the boiling point of the liquid and is usually studied with the 

adsorption of nitrogen gas to the surface of a solid submerged in liquid nitrogen at ambient 

temperatures (10), (11). This is a standard experiment of BET theory and will be discussed 

further. 

Surface and supports 

Catalysts are usually supported by high porosity oxide materials to both stabilize the 

metal and even provide further oxidation potential through the support itself. There are 

unsupported catalysts as well, such as in the oxidation process of ammonia by finely woven 

platinum-rhodium gauze (12), (13). These gauze materials have also been used to oxidize gas 

mixtures for the catalytic removal of volatile organic compounds (VOCs). To stabilize the 

unsupported metal catalysts, promoters are usually used as an anchor such as rhodium in the 

oxidation of ammonia, which slows down the surface rearrangement of platinum. However, the 



www.manaraa.com

metallic surface area is generally unimportant in the catalytic process since the rate of the 

reaction generally corresponds to the rate of reactant adsorbing to the surface followed by gas 

diffusion, i.e. the rate determining step. For reactions that depend on the accessibility to the 

metal and thus the reaction rate on the surface of the support, the most stable and highest surface 

area catalysts are ideal. Although fine unsupported metal particles with high surface area can be 

manufactured, they are generally very unstable under reaction conditions and thus supported 

catalysts are preferred (14). Common supports used in catalysis are alumina, silica, zeolites, 

active carbons, and complex mixtures. These supports have pore diameters large enough to 

house the metal crystallites and allow free range of adsorption and releasing of catalyzed 

products. Furthermore, the support is not always inert and can promote activity, selectivity, and 

stability; however, the support does not catalyze any reaction unless the support is a catalytically 

active oxide, such as V2O5 (75), (16). Some of the more inert catalysts, such as alumina and 

silica, have acidic properties and when used in conjugation can greatly influence selectivity of 

the catalyzed reaction. Silica-alumina supports, after undergoing specific calcination procedures, 

have strong acidic properties and are used in the isomerization catalysis of hydrocarbons (7 7). 

The acidic nature of alumina (AI2O3) is due to both Lewis and Bronsted acidic character. When 

alumina is in its pure form, oxygen acts as a Lewis acid in the presence of water, typically from 

the atmosphere, by accepting the lone pair. Once alumina interacts with water, the AlOH species 

acts as a Bronsted acid in that it dissociates a proton. Hydroxyl groups are found on alumina as 

well and behave in a similar manner and when combined with alumina can have a greater acidic 

character due to the weakening of OH bonds by silica (IV) and aluminum(III) centers (75). 
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Preparation methods 

Upon preparation of supported catalysts, both the surface area and number of active sites 

available are crucial to the activity and efficiency of the catalyst. Nature has the tendency to 

form shapes with the least surface energy thus it is important to prepare the supported catalysts 

as to oppose the minimal surface area boundary found with mobile ion tenacity of the support at 

the Tamman temperature, which is roughly half of the melting temperature (19), (20). 

Impregnation is used to infuse the support material with the catalyst head; two primary 

techniques are used, wet impregnation and incipient wetness (dry impregnation). There is also 

the method of deposition-precipitation to introduce the catalyst before calcination but 

impregnation will be the primary concern for this research. Impregnated catalysts are prepared 

by introducing a solution into the pores of the support. Two interaction types transpire between 

the support and metal during impregnation: ion exchange may occur due to the acidic protons of 

the hydroxyl group on the surface of the support, or the exchange may be a more physical 

interaction with direct relation to the volume of pore size and aqueous solution make-up. 

Incipient wetness occurs if the volume of the metal solution is equal to or less than the pore 

volume of the support (21). The goal behind this method of impregnation is to retain the 

catalytic species to the pores during drying rather than upon initial interaction. The advantage of 

incipient wetness is control over the weight of added precursor to the catalyst. However, the 

homogeneity of the metal catalyst over the support may not be as uniform as wet impregnation as 

can be seen below. 
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Figure 1. Pore filling outcomes of wet and dry impregnation due to drying techniques. 

If the volume of solution is greater than the pore volume of the support then the method is called 

wet impregnation. The drying process of the catalyst is vital due to the evaporation of water 

from the pores. If the catalyst is dried too quickly or harshly then the pore crevice may not 

uptake the entire metal bulk due to shifting of metal to the edges or outside of the pores (22). 

These two methods are used to expedite capillary action of the metal into the pores of the 

support rather than the alternative and slower process, facilitated diffusion. Therefore, the two 

methods differ in the approach of adding the metal to the support material. Wet impregnation 

method involves the addition of metal solution to a slurry of support. Incipient wetness adds the 

same dilute metal solution to a dry support. The two methods offer means to promote capillary 

action based on the porosity of the support and the volume of the solution. The percent-by- 

weight of metal added to the support has a correlation to both percent dispersion and catalyst 

efficiency; however, a major stipulation in the percent weight is the price of the metals. 

Therefore, complete efficiency involves maximizing activity and minimizing cost. The percent 

weight of palladium chosen was 1% which falls into the general region of metal to support 

composition of industrial production (79). 
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Once the solution or slurry of the metal catalyst is prepared then different drying 

techniques can be utilized to create an efficient catalyst. Drying rate, temperature, and 

atmosphere all have considerable impact on the quality of the catalyst. Current drying procedure 

involves drying in an air oven at 120 °C for 24 hours and a counter drying method at room 

temperature for 72 hours. Once most of the moisture is removed from the sample, a thermal 

treatment process of calcination is applied to the catalysts. Calcination is a process that removes 

the volatile fraction within the support and metal solution by thermal decomposition. This is 

usually accomplished by applying appropriate temperature ramping and soaking conditions in an 

air environment and results in catalyst stability. 

10 

™*™»*»»»»»»™ 



www.manaraa.com

Literature Survey 

CO oxidation and hydrocarbon adsorption over alumina supported noble metals (Ru, Pt, Rh, Pd) 

Kim et al. has shown a comparative study for the preferential carbon monoxide oxidation 

over supported metal catalysts such as 1 weight percent (wt.%) Pt/y-AkC^, 0.5 wt.% Ru/ y- 

AI2O3, 0.5 wt.% Rh/ Y-AI2O3, 5 wt.% Pt/ Y-AI2O3, 5 wt.% Ru/ Y-A1203, and 5 wt.% Rh/ y-Al203. 

Kim reported the highest preferential carbon monoxide oxidation as 5 wt.% Ru/ Y-AI2O3 by 

reducing the high inlet CO at concentrations less than 10 ppm at low temperatures. The catalysts 

were characterized by carbon monoxide chemisorption in the absence and presence of H2, 

temperature programmed oxidation (TPO), temperature programmed reduction (TPR), O2 

chemisorption, and transmission electron microscopy (TEM). A comparative analysis of metal 

to support, weight-percent differences between 0.5 wt.% Ru/ Y-AI2O3 and 5 wt.% Ru/ Y-AI2O3 

indicated similar particle size distribution based on TEM analysis but smaller amount of 

chemisorbed CO and O2 per Ru metal for the higher weight catalyst showed much better CO 

oxidation. However, TPR and TPO results indicated that 0.5 wt.% Ru/ Y-AI2O3 can be oxidized 

at lower temperatures but can be reduced at higher temperatures compared to 5 wt.% Ru/ y- 

AI2O3. The BET surface area for the following metals were obtained 1 wt.% Pt/y-AhOs, 0.5 

wt.% Ru/ Y-AI2O3, 0.5 wt.% Rh/ Y-AI2O3, 5 wt.% Pt/ Y-AI2O3, 5 wt.% Ru/ Y-AI2O3, and 5 wt.% 

Rh/ Y-AI2O3 yielding 94.0 (m2/g), 94.5, 105.4, 110.2, 87.1, and 115.0 m2/g respectively (23). 

Influence of catalyst treatments on the adsorption properties of alumina supported catalysts 

Diaz et al. has shown similar catalyst activity with alumina supported noble metals but 

characterized by the adsorption of w-alkanes, cycloalkanes, aromatics, and chlorinated 

compounds under different treatments such as reduction with hydrogen, oxidation with air and 

11 
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treatment with inert gas. Diaz reported a change in the oxidation state of the active metal by 

differing treatment methods and the effect of adsorption of organic compounds in the presence of 

adsorbed hydrogen or oxygen. These effects were characterized by temperature programmed 

reduction, temperature programmed oxidation, and temperature programmed desorption. The 

oxidation of metal particles revealed RI1/AI2O3 with a maximum peak at 420 °C, a low 

temperature peak occurred with Ru/ AI2O3 at 200 °C and no peak was observed for Pt/ AI2O3. 

Furthermore, TPD of H2 and O2 saturated catalysts indicated that Rh/ AI2O3 does not adsorb 

hydrogen whereas RU/AI2O3 and Pt/ AI2O3 exhibit continuous hydrogen desorption until 950 °C. 

The highest peaks were detected at 840 °C for Ru, 630 °C for Pt, and 470 °C for Ru alumina 

supported catalysts. The characterization of the adsorbed species was done by inverse gas 

chromatography (IGC) in the temperature range of 200 - 300 °C and the interaction parameters 

of polar molecules (benzene, chloroform, and trichloroethylene) were reported. The presence of 

chemisorbed hydrogen or oxygen on Pt hindered the adsorption of benzene more so than the 

adsorption of «-decane which showed competitive adsorption of O2 and aromatic compounds. 

The heats of adsorption, entropies of adsorption, and free energy of adsorption were also 

reported (7). 

CO2 reforming ofCH4 

Portugal et al. investigated carbon dioxide reforming methane over Rh-containing 

catalysts. Rhodium was supported on Y-AI2O3, M^Os, and Ti02 and prepared by incipient 

wetness impregnation method. The catalysts were characterized by X-ray diffraction (XRD) 

spectroscopy, nuclear magnetic resonance (NMR), and temperature programmed desorption of 

hydrogen. The hydrogen to rhodium ratio for Rh catalysts decreased in the following order: 

RI1/AI2O3 > Rh/Nb205 > Rh/Ti02 which was lower compared to those of the zeolite-supported 

12 
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samples and therefore had lower dispersion of Rh particles on the amorphous supports. 

However, for oxide-supported catalysts there was no strong correlation between activity and 

metal dispersion of Rh particles on the various supports; it suggested that activity on oxide 

supports depended on the type of support and alumina showed the highest specific activity. It 

was found that the effect of the protons on the destabilization of the zeolite framework was 

higher in the case of higher silicon/aluminum ratios due to the dealumination of the zeolite. 

Thus, neutralization of the protons by a strong base lead to the stabilization of dispersion and 

zeolite structure Also, oxide-supported Rh catalysts were more active compared to zeolite- 

supported ones due to a higher degree of participation of the reverse water - gas shift reaction 

(24). 

Pd/Ce02 and T1O2 catalyst for CO oxidation at low temperature 

Zhu et al. have prepared Pd/Ti02, Pd/CeC^, and Pd/Ce02 - T1O2 catalysts for the low 

temperature carbon monoxide oxidation by sol - gel precipitation followed by supercritical fluid 

drying. These catalysts were characterized by nitrogen adsorption, X-ray diffraction, diffuse 

reflectance infrared Fourier transform spectroscopy of carbon monoxide adsorption, and 

temperature programmed reduction with hydrogen and carbon monoxide. The preparation 

method produced finely dispersed PdO particles on the support surface with a high surface area 

outcome. Infrared spectroscopy showed CO adsorption that supported the hypothesis that Pd 

and Pd° species coexist in Pd/CeC<2, but only Pd° was detected in Pd/TiCh and Pd/Ce02 - TiC>2. 

Temperature programmed reduction by hydrogen showed homogeneous Ce02 mixture in 

Ce02/Ti02 support. The reduction of Ce02 - TiC>2 was determined to be more difficult than that 

of surface oxygen in the individual Ce02 due to the formation of solid material. Carbon 

monoxide TPR resolved the limited reduction of PdO in PdO/Ti02 on the support surface with 

13 
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contrast to the complete reduction of PdO in Pd/CeC>2 - T1O2 by carbon monoxide and was 

observed at ambient temperatures. Partial reduction of CeC>2 was associated with this reduction 

and indicated Pd - Ce - Ti interactions within the support and favorable reduction of PdO and 

interfacial CeCh species (25). 

14 
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Chapter 2 
Goal 

The preparation of a low temperature oxidation catalyst to oxidize carbon monoxide is the 

primary goal for this study. The following techniques were used to address the goal and research 

questions: 

1. Preparation of palladium catalysts by different methods. 

2. Characterization of the catalysts. 

Research Questions 

a. Do preparative methods alter total surface area of a catalyst? 

b. Do preparative methods change dispersion of the metal on the surface of a catalyst? 

c. Do preparative methods alter metal surface area of a catalyst? 

d. Do preparative methods have an effect on nature of active sites in a catalyst? 

e. Do preparative methods have an effect on strength of adsorption of a catalyst? 

Methodology 

Preparation of catalysts used in oxidation reactions of combustion exhaust depends on the 

metal precursor, the support chosen, method of infusing the metal to the surface of the support, 

the pH range of the solution, the drying technique, the calcination process, and reduction of 

impurities before characterization. The metal chosen for this study was palladium and supports 

were high porosity alumina and silica. There are two main methods to prepare these catalysts: 

wet impregnation and incipient wetness method. Tetraamminepalladium(II) nitrate solution (10 

wt. % in H2O) was used as the metal precursor supplied by Sigma-Aldrich (CAS 13601-08-6). 

15 
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Supports were fumed silica (CAS 112945-52-5) and y-aluminum oxide (CAS 1344-28-1). A list 

of catalyst variables are shown in Table 1. 

Table 1. Summary of prepared catalysts with respective methods. 

Catalyst Metal Support Loading Method Drying 

A Pd Alumina 1.0% Wet Impregnation a 

B Pd Alumina 1.0% Incipient Wetness a 

C Pd Silica 1.0% Incipient Wetness a 

D Pd Silica 1.0% Wet Impregnation a 

E Pd Alumina 1.0% Wet Impregnation P 

F Pd Alumina 1.0% Incipient Wetness P 

G Pd Silica 1.0% Incipient Wetness P 

H Pd Silica 1.0% Wet Impregnation P 

Incipient wetness method 

A solution of metal precursor (2.698 mL) was diluted in 30 mL of distilled water. Ten 

grams of support was placed in a beaker separately from the metal precursor. The metal was 

slowly added to the support with constant stirring. Once added, the catalyst slurry was allowed 

to stir for two hours at room temperature. Incipient wetness method of preparation resulted in a 

material that seemed to have a bulky composition. The paste appeared homogeneous after 

prolonged stirring. 

16 
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Wet impregnation method 

A solution of metal precursor (2.698 mL) was diluted in 30 mL of distilled water. Ten 

grams of support was added slowly to the solution forming a thick paste. The catalyst slurry was 

stirred at room temperature for two hours. Observations indicated wet impregnation method of 

catalyst infusion resulted in a very smooth and uniform paste; a longer time was required to add 

the dry support than incipient wetness method. 

Drying techniques 

Once the catalysts were prepared by their respective methods, two different drying 

techniques were employed and arbitrarily assigned designations a or p. The drying method of 

these catalysts refers to temperature controlled pore exposure directly after method preparation 

by evaporating solvent particles at differing rates. The a-drying method utilized an air oven to 

dry the catalysts to 120 °C for 24 hours. The p-drying method was a slower process that dried 

the catalysts at room temperature for a period of 72 hours. The catalysts were transferred to a 

desiccator until ready for calcination. 

Calcination 

Temperature programming was used for calcination. The dried catalysts were placed in a 

mortar and pestle and crushed to centimeter sized particles and placed in ceramic boats. 

Catalysts were heated to 800 °C at 20 °C per minute and then soaked at 800 °C for four hours. 

The catalysts were brought to room temperature and placed in a desiccator for reduction and 

analysis; catalysts were crushed to powder before analysis. 

17 
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Temperature programmed reduction 

Characterization and pretreatment of catalysts were performed on two separate 

equipment: Micromeritics Chemisorb 2705 (at Columbus State University) and Quantachrome 

Corporation ChemBET Pulsar (Quantachrome Instruments, Miami, FL). For analysis on 

Chemisorb 2705, argon was used as the carrier gas and hydrogen was used for treatment. 

Conversely, helium was used as the carrier gas and hydrogen was used for treatment with the 

ChemBET Pulsar. Approximately one gram of catalyst sample was placed in a quartz capillary 

reactor in a continuous stream of argon. An oven was placed over the reactor and the 

temperature was raised to 120 °C at 20 °C/min and soaked at 120 °C for thirty minutes. The 

carrier gas was changed to pure hydrogen gas and the temperature was raised to 400 °C at 10 

°C/min and soaked at 400 °C for two hours. The treatment gas was closed and pure argon was 

passed through the capillary at a maintained 400C for two hours, thus purging the reaction bed. 

The sample temperature was reduced to room temperature by fan after TPR and prepared for 

pulse titration. 

Pulse chemisorption/titration 

All pulse chemisorption experiments were accomplished by ChemBET Pulsar. The 

carrier gas used was argon and the analysis (injection) gas used was carbon monoxide. The flow 

of carrier gas was constant throughout the experiment and set between 80 and 90 a.u. on the flow 

meter. The injection volume of carbon monoxide was 250 mL and the detector current was 150 

mA. Experiments were performed at 40 °C and actual atmospheric pressure was recorded. The 

peak length of titration pulses was set to a minimum of 60 min and a maximum of 300 min with 
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a fourth order attenuation.  The reproducibility standard deviation limit was ±1.33% dispersion 

and a 95% reproducibility limit of 2.77 or ±3.69 % dispersion. 

Temperature programmed desorption 

Treated catalyst samples were saturated with hydrogen gas at room temperature by pulse 

chemisorption. Temperature programmed desorption (TPD) experiments were carried out with 

Chemisorb 2705. The saturated catalyst was exposed to a gradient change in temperature at 10 

°C/mintoalimitof750°C. 

Brunauer-Emmett-Teller (BET) physisorption 

Pretreated catalysts (see TPR) held in a capillary reactor were placed in an insulated 

chamber housing liquid nitrogen. Pure nitrogen was used as the analysis gas and helium gas was 

used as the carrier. Pulse titration procedures were implemented identically to carbon monoxide 

pulse chemisorption procedures with the exception of adsorbing species (nitrogen gas). 

Instrument specifications 

ChemBET Pulsar (Quantachrome Instruments) 

1) Performance 

a) Volume adsorbed: 0.001 to > 100 cm3 

b) Specific volume: 0.0001 cm3/g 

c) Total surface area: 0.1 to 280 m2 

d) Specific surface area: 0.01 m2/g to upper limit set only by weighing accuracy of smallest 

sample 

e) Pore volume: 0.0001 to 0.15 cm3 
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f) Accuracy, volume: ± 1% 

g) Reproducibility: 0.5% 

h)  Sensitivity: 10 position (dynamic range: 512) plus user selectable detector current 

2)  Temperature Control 

a) Preparation temperature: up to 450 °C using quartz heating mantle; up to 1100 °C using 

high-temperature furnace 

b) TPR/TPD heating rates:   1-100 °C/min (up to 500 °C); 1-50 °C/min (up to 750 °C); 1-30 

°C/min (up to 1000 °C); 1-20 °C/min (up to 1100 °C) 

c) Furnace control: via PC software 

d) Furnace cooling: forced air using built in fan 

e) Sub-ambient: optional gas heat exchanger and dual thermocouple 

Pulse Chemisorb 2705 by Micromeritics Corporation 

1) Performance 

a) Volume adsorbed: 0.001 to > 100 cm3 

b) Specific volume: 0.0001 cm3/g 

c) Total surface area: 0.2 to 280 m2 

d) Specific surface area: 0.02 m2/g limited only by weighing accuracy of smallest sample 

e) Pore volume: 0.0001 to 0.15 cm3 

f) Accuracy, volume: ± 1.5% with 0.5% reproducibility 

g) Reproducibility: 0.5% 

h)  Pore volume: Typically better than ± 3% 

2) Temperature Control (identical to ChemBET Pulsar) 
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a) Preparation temperature:   up to 450C using quartz heating mantle; up to 1100C using 

high-temperature furnace 

b) TPR/TPD heating rates:   1-100 °C/min (up to 500 °C); 1-50 °C/min (up to 750C); 1-30 

°C/min (up to 1000 °C); 1-20 °C/min (up to 1100 °C) 

c) Furnace control: via PC software 

d) Furnace cooling: forced air using built in fan 

e) Sub-ambient: optional gas heat exchanger and dual thermocouple 
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Chapter 3 
Results and Discussion 

Catalyst characterization data have been obtained by Brunauer-Emmett-Teller (BET) 

method of physisorption and carbon monoxide pulse adsorption. The monolayer uptake, pore 

size, surface area, and percent dispersion of both alumina and silica supported palladium 

catalysts are outlined in Table 2. 

Effect of preparation methods on total surface area by BET method and percent dispersion 

Table 2 consolidates organized catalysts A through H for TPD characterization and 

percent dispersion. These catalysts were differentiated based upon the support used, the method 

of preparation, and the method of drying.   Based upon carbon monoxide pulse chemisorption, 

alumina supported catalysts showed similar but slightly greater percent dispersions than its 

counter support silica, but not enough to exceed the standard deviation. However, there is a clear 

disparity between the drying methods and the percent dispersion of palladium over the surface of 

the support. There is clear evidence that the room temperature drying method has approximately 

a 5% larger dispersion.   This could be due to amorphous surface formation with prolonged 

drying. However, further surface studies such as transmission electron microscopy (TEM) must 

be completed to understand the mechanism of this increase in metal dispersion and additional 

chemi/physicosorption techniques for additional activity studies to determine the crystallite 

character.  Two catalysts were used to compare surface studies based on the support difference. 

Alumina appears to have improved pore frameworks over silica. The surface area and crystallite 

size of alumina supported catalysts are both larger than silica by approximately 10 m2/g and 20 A 

respectively.  The monolayer uptake describes the number of active sites that will promote the 

chemisorption reactions and appears to favor alumina over silica.   Alumina has a monolayer 
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uptake of 9.13 umole/g which can accommodate approximately 20% more molecules than its 

counterpart silica. The physisorption capacity for these catalysts is shown by the BET analysis. 

Both alumina and silica supports show similar capabilities as efficient catalytic supports with 

values of 93.8 m2/g and 91.3 m2/g respectively. 

Table 2. Characterization data of catalysts prepared by different methods and supports. Drying methods varied by 
oven in air at 120 °C (a) and room temperature drying (p) prior to calcination process. 

Catalyst Metal Support Loading Preparation 
Method 

Drying 
Method 

Percent 
Dispersion 

A Pd Alumina 1.0% Wet Impregnation a 10 ±1.3% 

B Pd Alumina 1.0% Incipient Wetness a 10 ±1.3% 

C Pd Silica 1.0% Incipient Wetness a 9 ±1.3% 

D Pd Silica 1.0% Wet Impregnation a 9 ±1.3% 

E Pd Alumina 1.0% Wet Impregnation P 16 ±1.3% 

F Pd Alumina 1.0% Incipient Wetness P 15 ±1.3% 

G Pd Silica 1.0% Incipient Wetness P 15 ±1.3% 

H Pd Silica 1.0% Wet Impregnation P 14 ±1.3% 

Metal Support Monolayer 
(Intake Surface Area Crystallite 

size 
BET 

B Pd Alumina 9.13 umole/g 43.30 m2/g 115.28 A 93.8 m2/g 

C Pd Silica 7.34 umole/g 34.78 m2/g 95.70 A 91.3 m2/g 

Site strength by temperature programmed reduction and temperature programmed desorption 

Site strength characterization has been completed by temperature programmed desorption 

(TPD) technique of chemisorption. This method of characterization allows the determination of 

the Sabatier individuality of a catalyst by metal-analyte bonding strength at various surface sites 
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over the support. Bonding strength between metal and analyte is necessary for all adequate 

catalysis reactions but depends greatly on the surrounding conditions. The overall strength of 

each preparation parameter can be compared with TPD measurements and therefore the support, 

method of preparation, and drying method were each compared. Figures i-iv compared wet 

impregnation and incipient wetness methods of metal permeation. 

Figures (i-viii).     Plots of thermal conductivity detector (TCD) signal vs. temperature  [difference between 
preparation methods (i, ii, iii, iv); alumina vs. silica support (v, vi); drying methods (vii, viii)]. 

100  200 300  400  500 

Temperature / C 

600  700  800 
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Multiple peaks observed from hydrogen TPD disclose availability based on bonding 

strength. The catalysts for figure i are a-dried alumina supported palladium catalysts with 

desorption peaks at approximately 400 °C and 650 °C. The stronger bonding site is revealed at 

650 °C and based on the right shifted trend; wet impregnation appears to favor full metal surface 

protrusion. This conclusion is observant in figures ii-iv as well. It is interesting to note that for 

catalysts observed in Hi, there appears to be two distinct desorption sites as well as a sharper 

peak for incipient wetness. This could be the result of low temperature drying of the P-method 

as opposed to the oven drying. A comparison between supports was observed for figures v and 

vi. 
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There is a clear distinction between silica and alumina supports here, and based upon 

TPD results alumina has well defined right shift indicating stronger adsorption sites. The highest 

desorption peak for a-dried silica is approximately 250 °C whereas a-dried alumina has a 

desorption peak as far as 650 °C resulting in a 400 °C shift. However, this trend is not observed 

between P-dried silica and alumina supported palladium catalysts. The effect the drying method 

has on silica is far more concerning than alumina. As can be seen in figures vii and viii, the peak 

shift of P-dried silica-supported catalyst compared to the peak shift of P-dried alumina indicates 

that lower temperature drying deactivates silica as a high temperature support or drying silica by 

oven promotes metal protrusion and exposure to the surface. 
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Based on TPD results, alumina supported palladium catalysts prepared by wet 

impregnation and dried at 120 °C ((3-drying) indicate strongest catalytic strength which is 

contrary to the silica supported catalysts prepared by incipient wetness with room temperature 

drying and shown with weakest catalytic strength. The hindrance or promotion of the drying 

method on silica supported catalysts offer an approach to surface studies and variety that may 

benefit these catalysis reactions at lower temperatures. 
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Conclusion 

Catalysts prepared by varying methods are practical for the oxidation catalysis of toxic 

combustion by-products to their non-toxic counterparts. Palladium, platinum, and rhodium are 

commonly used in automotive vehicle and industry exhaust for the purpose of converting toxic 

carbon monoxide to carbon dioxide, nitric and nitrous oxides to nitrogen gas, and hydrocarbons 

to carbon dioxide and water vapor. Three way catalytic converters utilize these three metals to 

efficiently reduce pollutant emission from vehicles. However, the optimal operating temperature 

is between 200 °C and 250 °C; the catalysts function poorly below this temperature. It has been 

a growing interest to pursue a heterogeneous catalyst that functions well at the operating 

temperature of a standard vehicle as well as ambient temperature. Therefore, the preparation of 

low temperature oxidation catalysis was the primary goal for this study. Preparation and 

characterization of palladium catalysts are justified by alteration of support, promoter, 

atmosphere, and spectrographic methods. The resulting data provide insight on future 

engineering of low temperature catalysis for the use of automotive and or industrial exhaust 

production. 
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